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AREA-TIME LOWER-BOUND TECHNIQUES WITH APPLICATION TO SORTING

G. Bilardi® and F. P. Preparata’’

ABSTRACT
The area-time complexity of VLSI computations is constrained by the flow
b and the storage of information in the two-dimensional chip. We study here the

] information exchanged across the boundary of the cells of a square-tessellation

of the layout. When the information exchange is due to the functionil dependence

{ between variables respectively input and output on opposiﬁe sides of a cell

3 b.ot'mdary, lower bounds are obtained on the ATZ measure (which subsume bisection
bounds as a special case). When information exchange is due to the storage
saturation of the tessellation cells, a new type of lower bound is obtained on
the AT measure.

) In the above arguments, information is essentially viewed as a fluid whose
% flow is uniquely constrained by the available bandwidth. However, in some
computations, the flow is kept below capacity by the necessity to transform

i information before an output is produced. We call this mechanism computational

friction and show that it implies lower bounds on the AT/log A measure.
Regimes corresponding to each of the three mechanisms described above can
appear by varying the problem parameters,as we shall illustrate by analyzing the

problem of sorting n keys each of k bits, for which ATZ, AT, and AT/log A bounds

are derived. Each bound 1is interesting since it dominates the other two ina a

suitable range of key lengths and computations times.
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1. Introduction

Considerable attention has been devoted in recent years to the establishment

of lower bounds to the principal measures of performance of VLSI circuits, that
is, chip area A and computation time T. Typically, these lower bounds are in

the form of area-time tradeoffs and are based on minimum requirements on the

amount of information that must cross suitably chosen sections of the circuit chip.

Lower bounds to performance measures are valid within a well-defined
computation model. In keeping with common practice, in this paper we adopt the

so-called synchronous VLSI model.

A computational problem II is a boolean mapping from a set J to a set O of
input and output variables, respectively. The mapping embodied by 1 1is realized
by a boolean machine described as a computation graph, G = (V,E), whose nodes
V are information processing devices or input/output ports and whose arcs E are
wires.

A VLSI chip {s a two-dimensional embedding of this computation graph,
according to the prescriptions of the model. The model is characterized bv a
collection of rules concerning layout, timing, and input/output (I1/0) protocol;
in addition, the model restricts the class of computation graphs to those having
bounded fan-in and fan-out (without loss of generality, this bound is assumed to
be two).

The layout rules are:

L. Wires (arcs) have minimum width \ and at most » wires (v > 1) can

overlap at any point;

2. YNodes have minimum area ckz, for some ¢ > 1.

No loss of generality is incurred if the lavout is restricted to be an embedding

of the computation graph in a uniforam grid, typically the square grid: the latter
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is the plane grid the vertices of which have integer coordinates (layout grid).
The layout rules may contain the additional specification that all 1/0 ports be

placed on the boundary of the layout. Chips obeying this constraint are

referred to as boundary chips; unless otherwise noted, we shall consider
* unrestricted chips, where I/0 ports can occur anywhere in the layouts.
The timing rules specify that a bit requires a fixed time T (hereafter,
assumed equal to 1) to propagate along a wire, irrespective of its length

_ (synchronous system). Finally, the I/0 protocol is semellective (each input is

received exactly once), unilocal (each input is received at exactly one input

port), time- and place-determinate (each I/0 variable is available at prespecified

port and time, for all instances of the problem).
For a given problem 1, a tradeoff between the chip area A and the computation

time T is conveniently expressed by the family of functions

A= an(T). TE [Tmin(n).l‘max(n)]

where n is the input size, an(T) is the area of the smallest design that solves

1 in time T, Tmin is the minimum time required to solve [ (regardless of the area),

and T is a time such that, for T > T 0 (T) is constant with respect to T.
max max’ n

Equivalently, a tradeoff is expressed as a relation g(A,T)= Q(f(n)), for a

suitable function g.

Toc date, almost all known area-time lower bounds belong to one of the three

following classes:
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(1) Input-output flow bounds. They are of the form AT= I(,J! + ),

AR B P
."4'.0‘
P 0

. I. 'v‘i

)




and follow directly from the fact that the maximum number of bits that can be

exchanged with the exterior in a time unit is proportional to the number of
I1/0 ports, which in turn is at most proportional to the chip area.

(2) Internal-flow bounds. They are typically of the form ATZI- Q(IZ)

where I is the bisection-information of NI, i.e. the minimum amount of

information that must be exchanged across any section that equipartitions the
set V [1]. When I is known, the bound follows from the fact that the area ia
at least proportional to the square of the minimum bisection width b, and that
the number of bits that can be exchanged across this bisection in a time unit is
at most proportional to b.

(3) Node-degree bounds. To our knowledge, this type of bound has been

developed only in connection with integer additiom [2,3] and can be stated in
the form AT/logA = Q(M|). Such bound hinges on the fact that, since the
computation time cof output functions depends on the number of their arguments,
information must reside within the chip for a certain durationm.

In this paper, with the intent to take a further step toward the development
of a coherent theory of VLSI complexity, we develop a finer analysis of internal
flow by considering subdivisions of the chip, which are more demanding on the
information flow than balanced bisection.

In Section 2, we introduce a novel technique, called 'square tessellatioa",
which is based on a partition of the chip into square cells of equal size,
and on the information exchanged across the boundary of these cells.

When the mechanism forcing the information exchange is the functional

L o

!
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dependence between variables that are input inside and output outside a tessellation

2
cell (or vice versa), the tessellation technique leads to bounds on the AT~

measure (of which bisection bounds are a special case).
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We also identify a new mechanism of exchange, due to storage saturation

of tessellation cells, which leads to bounds on the AT measure. Indeed,

s r Cs v

‘

storage limitations may affect the information exchange in several ways. For '

e

example, during the computation, a cell may fill its storage (a situation

"
¢

3 referred to as "saturation'") and hence be forced to send some information N
outside, just for temporary storage, and to receive it back at a later time. ;5
In other situations, some information input outside of a cell is needed by the
cell at several different times. If the amount of this information exceeds the
storage capacity of the cell, the information must be transmitted through the
boundary each time.

It must be pointed out that, although both the input/butpuc flow and the
internal flow due to saturation lead to AT bounds, the phencmena involved are
completely different. Indeed, input-output flow occurs through a two-dimensional -
section and has the physical dimensions of bits/(length)z, while intermal flow :;
occurs through a one-dimensional section and is expressed in bits/length.

When considering either I/0 or internal flow, information is essentially
viewed as a fluid whose flow is uniquely constrained by the available capacity
(bandwidth). However, in some computations, the I/0 flow is kept below capacity
by the fact that information has to be transformed before being output, and that "
this transformation cannot be instantaneous due tc the bounded fan-in and
fan-out of the gates. In the context of the fluid-dymamic analogy of VLSI Qi

computation, it seems appropriate to call this mechanism "computational friction

EREREEER

A general framework for this phenomenon is also developed in Section 2.
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In Section 3 we illustrate the techniques introduced in Section 2 by
deriving new ATZ, AT and AT/logA bounds for the problem of sorting n k-bit
keys. Each bound is interesting since it dominates the other two in a suitable
range of key lengths and computation times. In Section 4, we briefly mention
analogous results in relation to the problem of cyclic shift, merging, and
record sorting.

After completion of the work reported in this paper, we have learned that
some ATZ bounds based on the notion of tessellation had been previously derived

in unpublished work by Angluin [4], and that Siegel [12] reports the same ATZ

tessellation bound as our Theorem 7.
We also mention that partitions of the layout into multiple regions
(different from square tessellation) have been used in [5] to study the
area-time complexity of multilective protocols. -
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2. Square Tessellations and Lower Bounds on Performance Measures

The general background of all considerations developed in this section is
a partition of the laid-out computation graph into two portioms, which, when
appropriate, will be identified with two processors Pl and P2 cooperating to

solve the given problem II.

The partition may refer either to topological properties of the graph

(sets of vertices and edges), or to its computational properties (set of 1I/0 'f@
variables). The two cases are referred to as 'dichotomy" and "I/O assignment"

n
respectively, as expressed by the following definitions: . }

Definition 1. If¥ = 9 Uy O is the set of I/0 variables of N, an 1/0 e

J assignment for [ is a partition CVI,VE) of 7.

Definition 2. Given a graph G = (V,E), a dichotomy of G is a partition

R
e e

(Vl'v2> of V; G(Vl.Vz), called dichotomy width, is the number of edges connecting

V oto V..
10" S

The square tessellation, to be introduced next, is a device that we use to ?}?

; generate partitions. Let the auxiliary gzrid be the translation of the layout ?;ﬁ
2rid by the vector (l,k%). :if

' Definition 3. A square tessellation with sidelength 1 is a subgraph of the 3i?
auxiliary grid formed by two sheaves {x =4 + j2 : j > 0} and {y =% + ji :j > 0} t?

of evenly spaced rows and columns with spacing 1. 5?%

A square tessellation is a partition of the plane into identical 1 x 2 ,iq

tiles called cells, i.e. it is a zeometric partition. It can de used tc produce Ef%

a dichotomy (and the associated 1/0 assignment) by identifving an individual v

cell with one term of the dichotomy, and the rest of the layout with the other 'iéi

term . The outstanding feature of the tessellation techmnique is that it E;E

L]
x‘

permits accounting for the simultaneous presence of all other cells.
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We begin by obtaining a lower bound to the area A of the layout in terms
of (topological) properties of the graph.

2.1. Lower bounds on the area of the chip

Given a graph G = (V,E), and an integer 0 < m < |V|,consider the set
a
ro= ((v,v,): |vl] m} and let

§(m) = min §(V

Vy)s (1)
(Vv ET

1’
i.e., 8(m) is the smallest dichotomy width over all dichotomies of V with
fixed ratio ;vll/!vzl. Thus, &(L|V]/2)) 18 Thompson's minimum bisection
width [1]. We can now state the following theorem:

Theorem 1. For every graph G = (V,E) and every m < |V|

2
- (' |5 (m)
A ..(,V,-———m ) (2)

Proof: We position the layout rectangle R with its southwest corner at
(%, and partiction it by means of a square tessellation, with spacing
(= (3(m) - 1)/4. Both sides of R have length at least &§(m)-l. In fact, we
can cut R by means of a vertical two-bend polygonal line on the auxiliary grid
(zig-zag line), into two polygons one of which contains exactly m vertices.
Thus, at least 3(m) edges cross the cut, §(m)~l of which are horizontal, and
the vertical side has length at least §(m)-l. A similar argument applies to
the norizontal side. Then R contains at least 16 cells of the tessellation
and the smallest tessellation rectangle R' containing R has area at most
25/16 times as large as the area of R. We now claim that each cell of R'
contains {ewer than a vertices of G. Indeed, if a cell contains m or more

vertices we cut it, by means of a zig-zag line, into two polygons one of

—— rdinn A tiaie Bt e ir e A en Sve Ban A0 Jue i mie- AN




which contains exactly m vertices; this polygon has perimeter

p <42 = 41(8(m) -~ 1)/4) < 8(m) - 1, so that fewer than &(m) edges cross the
cell boundary contrary to the definition of 8(m). It follows that at least
MVv|/ml cells of R' contain some node of G, and therefore overlap with R.
The area of R' is at least as large as the global area [ |V|/ml (L(G(m)-l)aJ)2
of these cells, so that A is at least 16/25 of it. C

The best lower bound to the area of a layout of G is obtained for the
value mo of m that maximizes the ratio Gz(m)/m. For most of the computation
graphs considered in the literature m07: IVli/2, yielding A = Q(Gz(m)). This
accounts for the success of bisection techniques. We shall see later that for
the computation graph of some significant problems - such as sorting-—éz(m)/m

achieves its maximum for values of m considerably smaller than |VI.

Since the graphs to be considered in this paper are computation graphs,
1t is convenient to establish a link between the notions of dichotomy and of
1/0 assignment. Specifically,; in a computation graph G a subset U of V is the
set of I/0 ports, and v € U handles ¢(v) variables during the computation; in other
words, an integer-valued function @on V adequately identifies the 1/0 ports,
each with its multiplicity. The fact that, for some v € U we have @(v) > 1,
introduces a ''coarser gragularity" in the partition of the I1/0 variables, which
oust be dealt with.

To achieve a possiblv useful broader generality, for G = (V,E) we consider
arbitrarv weignting functicns @9:V - N (the nonnegative integers), and denote

by mnax = max{@P(v):v <€ V! and by M = @(v), the global weight. For an

[«
veEv
integer m < M, define the following class of dichotomies:

T (V. V) im - +1 < ( < a;
( 1 2) m (Dmax < ¢ D(V) < 7,

1

P R
e
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Intuitively, a weighting function models a general distribution of input/

output variables, and the generalized definition (3) of class of dichotomies =
copes with the input granularity, as expressed by wmax' By a straightforward':
modification of the proof of Theorem 1, we can then establish: Ei

Theorem 2. For a graph G = (V,E), let ¢ be a weighting function @ on V -

with parameters M and @ ax’ and let T satisfy (3). Define

., = min S8(V.,V.).
r (V,.9,) €T 172

Then 2
GF
A=QlM

—
m Ll

Note that when @(v) = I 1 for every v € V, M = |V|, T becomes .
and (4) subsumes (2). It must be stressed that the notion of dichotomy
pertains to a given graph; we shall now see how relation (4) will be instrumental:

to obtain area~-time lower bounds on all graphs solving a given I.

2.2. Area-time lower bounds based on information exchange (ATZ-theorv)

In this section we shall consider a graph G = (V,E) as a computation graph

solving problem M in time T, and we shall establish a lower bound to its layout ::
area as a function of T and of parameters of I. :ﬂ

The starting point of the argument is a dichotomy (Vl,VZ) of V. This v
dichotomy naturally identifies two processors Pl and PZ’ where Pi is defined as ??
the subgraph induced by vertex set Vi (i =1,2). 1In turn, if we define VE =
as the I/0 variables of 1 handled by processor Pi (1 =1,2), then we obtain an =
1/0 assignment CVl,?}). Such assignment is characterized by a very important Ei

parameter, called "information exchange', as expressed by the following

definition (similar definitions have been considered by many authors, e.z. -

(1,6,7,8]):




T

Definition 4. The information exchange of [l under assignment (Wa,?é)

is defined as

I(Wi.?é) = the minimum over all the algorithms (which solve [ under

assignment (?1,%5))of the maximum over all the problem instances of the number

of bits exchanged between P, and P, .

1 2
In other words, for any algorithm that solves 1l under (Wi,?a) there is at

1 2
no integer larger than I(?i.?a) enjoys the same property.

least a problem instance for which P, and P, exchange I(Wi,Wi) or more bits, and

In the following, CVi.Vé) can be an arbitrary member of a class H of
assignments, so that we need to lower-bound the information exchange for all
members of this class. The argument is completed by considering a class of
dichotomies of an arbitrary, but fixed, graph G solving I in time T, and the
corresponding class H of I/0 assignments, and by bounding the dichotomy width

of G in terms of the information exchange of H and the time T.

More formally, for a class H of I/0 assignments for 1, we define

= min LY ,7) (5)
= (7, V) €H 172

We now relate SF of a given class I of dichotomies of G with the IH of the

corresponding class H of assignments:

Lemma 1. Let [ be a class of dichotomies of a graph G, which solves 1

in time T. Let H = {(71,7}): (71,72) corresponds to (Vl'VZ) € T'}. Then:

.

GT‘ i—,r < (6)

Proof. Let (Vl,Vz) € T be a dichotomy of V and CVI,?Z) the corresponding

assignment. Then V. must be able to exchange I(V&.?}) 2> L bits with V_ in ]

1 2 )
time T and therefore must be connected to V2 by at least IH/T edges. O o
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Let UC ¥ be a set of I/0 variables of Il and ®(v) the number of variables

of Y handled by node v. As the class I' we consider the one defined by relation

(3), for m < |U| and ® ax < T» and obtain the following result:

Theorem 3. Let T be a class of dichotomies of G (which solves I in time T) j:::
satisfying (3) for m < | and ©poe S T+ Letting H = {(?/1,7/2):(‘1/1.72) correspond:

to (Vl,vz) € T}, we have 2

T

2

at? = al |y )

Proof: Immediate, by combining Theorem 2 and Lemma 1. Q

Theorem 3 is the cornerstone of the so-called ATZ—theory of VLSI computation
and has far-reaching consequences. The reasons are that for most computational -‘
problems we are able:

(i) to characterize the class H corresponding to I' that satisfies (3);

(ii) to compute or bound I‘B =i

To make the tradeoff more explicit, we note that, for given parameters

© x and m of T, H is the class of 1/0 assignments for which -

m-(Dmax-t-lii?flﬂ'U}im 8

Moreover, if Hj is the subeclass of H for which :Vi N %l = j, then

1_Hm_(pmax+l,...,ﬂm} is a partition of H. Therefore, denoting I(j) I.Hj ,

hv the definition (8) of I'Fl’ we have

l’.H = min{l(m-omaxﬁ-l) s eae,l(m)?.
Therefore we can work with I(j) to obtain a lower bound to IH Notice at first
that I(j) - I(j—l)!i 1, since by just sending one bit from P, to P_ we can

1l 2

transform an assignment in Hj to one in Hj-l’ (or vice versa). Thus, by using -

I(0) = 0 and the above inequality we obtain




I(m) <m , (9)

I(m) - I.H < wmax -1. (10)

This inequality is used crucially in the following theorem.

Theorem 4. Let G be a computation graph solving NI in time T. Then

2
ar? - @ |U| lﬁﬂ

Proof. Let @ = max ®(v). Let T be the class of dichotomies of G
nax  vev
satisfying (3) and H its corresponding class of I/0 assignments. Clearly,

mﬁax < T, since each port reads or writes at most one bit per unit of time.
Relation (10) becomes I(m) - Iﬂ'i T -1, or equivalently IH‘Z I(m) - T+ 1.

Therefore relation (7) can be rewritten as

2
at? > 2, |y M@=D) (11)

for some constant Xl. This bound may become weak for large values of T;

however, for large T, we expect AT to remain large. Indeed, we have the interplay
of two contrasting phenomena, an I/0 bound (prevailing for large T) and an
information-exchange bound (prevailing for small T)(*). Specifically, the I/0

bound AT > (% yields

ar? > U (12)
Combining relations (11) and (12) we obtain

(1(m)-T+1)?2

2
[
AT Z_Izdmaxgxl —

T}

*
( )Lower-bound arguments of analogous flavor are due to Savage [9 ] and
Brent-Kung {10].




.....
..........

...................

If we choose for T the value TO = Iz(m)/(ZI(m)+(m/Xl)), then we have

1. T<T, Trivially, I(m) - T+ 1> I(m) - T. Since (I(m)-T)? 1s a
decreasing function of T, it achieves its minimum at T, whence: <
(K@-1+1)% > (1w -13w /2T m+@/3N? > 1@ (Tr@/A ) /(212w )] = 12 /.

2. T2T, By (9), (@ < m, whence T > T, 2 IX(w)/(zmra/a) > @ /em

taking A, < 1/2.

1
This completes the proof of the theorem. c

2.3. Saturation area-time lower bounds (AT-theory)

When we ideally isolate a region of the layout of a VLSI system, not only

is the bandwidth between this region and the remaining part of the layout bounded ~*
by the perimeter of the region, but also the amount of information that can be

stored within the region is bounded by its area. This fact has important

o
consequences for the area-time performance of some computations. In this section

we develop techniques to express these effects in a quantitative manner.

In the familiar framework where processors Pl and P2 cooperate to solve

-
problem J, we now assume that only a limited amount S of storage is available = !

in Pi (i =1,2), and refine Definition 4 as follows:

I

Definition 5. The information exchange of I under assignment (71,v2) and the'

condition that Pi can store at most s, bits (i = 1,2) is defined as: BN

I( 7&}72 |sl,sz) 2 the minimum over all algorithms (which solve I under assignment

(71,7}) and storage bounds $) and SZ) of the maximum over all ti;
problem instances of the number of bits exchanged between P

1 anizf.
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In analogy with previous definitions, for a class H of assignmeuts for Il

we have

IH(SI’SZ) - min  I( 71,7

2 isl.sz) (13)
“,,v.)€ER
1’2

and let I(m\sl.sz) L] Ium(sl.sz). Note that I(CVlfVZ)Isl.sz) is nonincreasing

function of s, and S, (more storage never hurts), whence

IV,7,) = WYY, =) < (Y7, s)hs)).

We now identify with processor P, a cell of a square tessellation of the

1
layout with sidelength £, and let m be the number of variables handled by Pl.
Clearly the storage of Pl is upper-bounded by 22. and we have

I(m]sl,sz) = I(mlzz,A-lz)‘l I(m|£2,+w), where A is the layout area. Since the

cell's perimeter is 42, we conclude

2
o2 ,4
T .>_ 41 . (14)

Lf !%f variables are input/output in area A,for any U< ¥ there is at

least one cell of the tessellation that handles at least !UIlz/Az variables of U.

However, due to the granularity of the input/output there may be no cell
nandling exactly {UIZZ/AZ variables; on the other hand, if cell C handles more
than |U|12/A2 variables, since wmax < T,a zig-zag cut will isolate a portion
of C handling (!UIIZ/AZ + h)variables for some h satisfying 0 < h < T. Thus

We can write

.0 2
T>1 —J%EL- +h | 12,» //21 for some h £ [0,T-1].

This discussion proves the following theorem.
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Theorem 5. Let G be a computation graph for problem M. Let U be a set of
I/0 (binary) variables of 1. If Hm is the class of assignments such that

exactly m variables of WU are assigned to Pl, and I(m|s,¥) is the information

o
‘.

exchange of Hm when Pl has s bits of storage, then the area-time performance of
any layout of G satisfies the bound for arbitrary ¢: ks
2 e
T > min IQM%+ h[zz,o)/lm. 1s) .
0<h<T -

Remark 1. To obtain the best bound we choose the value of 2 that maximizes the
right-hand side of (15).

2
Remark 2. If I(m|s,») is increasing with m, then T > I(]ldixlzz,o)/AZ.

Remark 3. If for the value 24 of 2 that maximizes (15) we have I(m[lo,w) = 8m

for some constant B (as is found in all applications considered so far)é}

" then we can rewrite bound (15) as

t }
T _>. B‘u! A.az ’ '.'t
0
or equivalently ::.
AT > a(jy| 2g) - (16) -

Usually 1. is an increasing function of |u| so that (16) is a stronger bound

0 :
than the straightforward I/0 bound AT = 2( %U|). ’

—
'
&b e A A

aE Aata A & SRS a .

' ".,.
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2.4. Area-time lower bound due to computational friction (AT/logA-theory)

In all of the previous considerations we have viewed the computational
process inside a VLSI chip as a fluido-dynamic phenomenon; so that the
performance bounds are determined by the ability to ensure certain flows within
the prescribed time. Note that this viewpoint is completely oblivious of the
fact that the vertices of G have bounded fan-in and fan-out; however, computation
delays are exactly due to these limitations, which we now wish to bring into
the picture.

We begin by considering the notion of "functional dependence'.

Definition 6. Given a function y = f(x), where x = (xl....,xp) and

is functionally dependent

y = (yl,....yq) are boolean vectors, we say that yj

on x, if there exist two boolean vectors x' and x" that differ only in the

i-th component, such that y' = £(x'), and y" = £(x") differ in the j-th component.
We now explicitly consider that all gates of our circuits have fan-in

bounded by a constant fI; if ocutput variable y is functionally dependent on s

input variables, then at least logfIs time units must elapse between the instant

when the first of the input variables is read, and the instant when y is output.

Hereafter we assume fI = 2,
Informally, suppose that s variables xl,....xs are input at the same time,
and that there exist r output variables yl,...,yr with the following properties:

(1) each Y5 is functionally dependent on all xi's;

(2) the variables Yyse+esy  carry I bits of information on xl,...,xs. ]

'ﬂ

Then since no yj emerges before logs units of time, the system must be capable N
9

of storing I bits for logs units of time, or AT > I logs. In other words, ~*;

in the analogy where information is a fluid flowing from input ports to output




ports, we can say that functional dependence acts as a kind of computational

friction, that slows down the flow keeping 1t below capacity. This intuitive
notion can be formalized in the following theorem:

Theorem 6. Given a computational problem I with a set 9 of input variables.::
and a set (@ of output variables, let U be a subset of ‘9 such that for any -
partition ul"“’ul' of U there exists a collection 9*1,...,2#,]: of disjoint subsets
of @ (not necessarily a partitionm) satisfying the following properties: s

(1) Each variable in %t is functionally dependent upon at least a(l'utl) ‘,‘~."4 ‘

variables of 'L(t, where a( ) is an increasing function of its argument. -

(2) The variables in J - U can be selected so that, for each t = 1,2,...,'1‘; '

the variables of "I: carry at least B(I'Utl) bits of information relative e

to 'ut, where 8( ) is an increasing function of its argument.
Then, for any VLSI system that solves I, -
T

AT > min z 8(st)loga(st) . 7
g+e.tso=| U o=l

Proof. Let us define ut as the subset of variables of % that are input by

the system (exactly) at time t. Clearly, ul,...,uT partition Y. Let -

‘)il,...,‘:i,r be the corresponding collection of disjoint Subsets of & . Because

of prcperty (1), and of the bounded-fan-in assumption, no variable in “/c can

be output before time t + loga(:ut}). Because of property (), at least

3( 'th ) bits of information on ut have to be stored by the svystem in the interval ..h

{e,¢ + log :x(;'utf)] . Since one bit stored per T units of time contributes Tt to .

the AT product, we conclude that
T

AT > £ 8(Ju_!)loga(u ) (18)
- =l t t

...........................

..................................................

................................
...............

.......................................

.......
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T
where I ‘utl = T. The partition % ,..-sUp» and hence the right-hand side of (2)
t=1

is a function of the input schedule and varies from system to system, but it is
never smaller than the right-hand side of (1). 0

Corollary 1. Under the same assumptions of Theorem 1, if B(s)loga(s) is
a downward-convex function of s, then the minimum in (1) 1is achieved when

S =8, T ... w8, = |u| /T, and (1) yields,

A > B(|U|/T)loga(|U|/T). (19)

Corollary 2. 1If B(s) = Bos, and a(s) = aos. then (3) can be rewritten as

A = (U /Tlog (U] /T)), (20)
or
AT/log A = a(lU]). (21)
Theorem 6§ and its Corollaries 1 and 2 apply to chips with bounded fan-in.
Similar arguments yield analogous results for chips with bounded fan-out. In
this case, the friction arises from the fact that, if s variables yy» ey, are
output at time t, and are all functionally dependent upon input variable X,

then x must be input prior to time t - logs.

" "-_".,'-.'-‘."-.{."j-' ’.l '-,"..‘ '-. ","'..: -

o o, [
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3. Sorting

In this section we shall illustrate the lower-bound techniques introduced
in Section 2 by applying them to the sorting problem, which we define formally
as follows,

Definition 7. In the (n,k)-sorting problem.

(1) The input is a sequence of n k-bit keys, each a member of a finite set of
integers.
(2) The output is a rearrangement of the input keys, so that they form a
nondecreasing sequence.
Notationally, input and output are represented as n x k binary arrays
X = {Xi} and Y = {Yi} » respectively, with { = 0, ...,n-1, and j = k-1,...,0;
i
bit position j). We can view the input of (n,k)-sorting as an (n,k)-multiset,
i.e. a multiset of n elements each drawn from a universe of 2k values. As we
will show, the nature of (n,k)-sorting changes considerably with the relative
size of n and k, and we find it useful to classify (n,k)-multisets in multisets

of short keys (1 < k < logn), of intermediate-length kevs (logn < k < 2logn),

and of long keys (2logn < k). With a slight abuse of terminology, we shall use

phrases like "sorting short keys" instead of "sorting a multiset of short keys .

To gain intuition on the transfer of information from input to output, we
observe that

§ .. L L
Yi ‘(T\'(i) - 0,1,...,n-1, j 0,1,...,5-1,

where 7(0),7(1),...,7(n-1) is a permutation of 0,1,...,n-1. Thus, there is an

information flow from the inpuct to the output ports of the same position, which

X, is the (i+l)-st input key and xJ 1s the bit position of weight 2j (or briefly,

o
"
.

1
“

~1)
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we call primary flow. In the primary flow, each bit enters and leaves the

system maintaining its ideatity. However, the exact destination of each bit
within its own position depends on w, which, for position j, is determined by
the values of the data in positions j,j+l,...,k=1. This information,flowing from

most significant to least significant positions, is called secondary flow.

Primary flow considerations have been used by Thompson [1l] in proving the

ATZ - ﬁ(nzlogzn) bound for word-local (n,logn+8(logn))-sorting. The bound has

been later generalized to non-word-local protocols by Leighton [11] who succeeded

in combining primary and secondary flows with the help of cyclic-shift arguments.
In Section 3.1 and 3.2, we combine a quantitative characterization of primary

and secondary flows with the general techniques of Section 2, to obtain novel lower

bounds for the problems of sorting short and long keys.

3.1 Short Xeys

In this section we study (n,k)-sorting for k < logn, and denote by
3 2 2% the size of the universe of possible keys. We shall obtain an ATZ and
an AT bound. Both bounds are based on primary flow, as expressed by the

following lemma.

Lemma 2. Chosen r/2 arbitrary input bits

uin = {xo .x° ,...,xo ) (22)
Py P Pr/2-1
ind £/2 arbitrary output bits
U = {YO .YO ,...,'zo ) (23)
out 9 9 Qe /2-1

with 9, < digpe the remaining input bits can be set to constant values to enforce :jf

the condition

]
{ =X 1= 0,1,...,0/2=1 . (24) FZA
;
k
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Proof: We set X = 21 + XO », 1 =20,1,...,r/2-1 and divide the remaining

Py Py
n-r/2 input keys arbitrarily into r/2+l sets such that, for i = 0,1,...,z/2-1,

the i-th set countains (qi ~-1) keys whose value 1s set to Zi(q__lé 0), and

=q
i-1
the (r/2)-th set contains (n-l-qr/z_l) keys whose value is set to r/2-1. The

output sequence corresponding to this input 13 shown in Figure 1, and it

P

satisfies Equation (24). C
We state now the ATZ bound for short keys.
Theorem 7. Any VLSI (n,k)-sorter, with k < logn satisfies the bound

aT? = a(nr), (25)

where r = qu

e =T D £ iy r— l.s.b.

4
Qe—1) keys

A

Y% >

OlO ¢+« O

qi—i-1—1) keys :
) i .10
ﬁi — i g Xgi

4 ri2—1 0

(% 2-1=4r2-2—1) keys : :
1 r/2-1 0 .
I ey < xs :~

1 r/d—=1 1

(n=1=q,/3_1) keys . :

7 r/2=1 1

- X ; 0 {
Figure 1. Sending r/2 arbitrary bits in X to r/2 arbitrarv positions in ?),

e
o u v
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, Proof. Result (25) follows from Theorem 4, with U = {Xg i 1= 0,1,...,n-1},
m = r/2, and from the bound I(r/2) = Q(r), which we now prove.
Given a protocol that assigns exactly r/2 entries of XO to P1 and

n - r/2(> r/2) to P,s let Py be the processor that outputs more entries of Yo

NP Yy

(break a tie arbitrarily). From Lemma 2, we can always find two sets uin and
o -
ue 23 10 (22) and (23) such that Z&n is input by P, _ and uout is output by

Ps. Equation (24) implies that r/2 bits input by P3_s are output by Ps’ for

{ suitable values of input variables not in uin. Hence, I(r/2) > r/2 = 4(r), as
desired. O
i We shall now prove an AT lower bound based on information exchange under

bounded storage (saturation).

Theorem 8. Aany VLSI (n,k)-sorter, with k < logn, satisfies the bound

AT = 2(arT) (26)

R
where r = 2.

Proof. Referring to Theorem 5, we choose U = YO, and, for some real o€ [0,%])
we consider a square tessellation with sidelength /or. Thus, there exists at
least one cell C -- identified with processor Pl -- that outputs m > nor/A
entries of YO. To estimate the quantity I(m|or,=), we subdivide the interval
[0,T] into consecutive intervals and evaluate the information exchange in each
such interval. Specifically, we form the sequence intervals

(fe,+l.t,
S

1+1J:Oii<L’t’-l’t

0 L

2, bits of YO, with r/2 < m, < t©/2+or (this partition of [0,T] 1is well-defined,

= T), so that during [ti+l’t1+l] C outputs

since C outputs at most or bits per time unit).We now consider [c1+l’ti+l]

individually We apply Lemma 2 by choosing the r/2 elements of u0ut among the

- T s . P R A ) > " n e - - o e T e T . -t - " e . PR - - 0. " - Y e . v e . - T Y . « T m T et - * e te s
R S P ST ar ST B T N LT A R TP e - T T L A Tt
RPURTIA APPSR U VAP Rt W AR P IPaT I PRI ALIAL I R IR AP, S 2 T, AT UPNE TP PP PR WP T Y|




m, bits of YO and uin c Xo arbitrarily. Since XO must be completely input

before any bit of YO can be output, during [ti+l,t ] cell C outputs r/2 bits

i+l
already in the chip at ti+l. But C stores at most Or bits, whence (%4-0)r bits
must flow across the cell boundary (of length 4/or) during the interval.
Summing this flow over all L intervals we have

I(m|or,) > L(}-0)r,

and, observing that L > m/ma.x(mi) > (nor/A)/r(l¢+g) we obtain

I(m|or,») > n j;—.gl 9A£

Since I(m|or,») flows across a section of length 4Yor in time T we have

ATiT—%:;n/;’ (27)

wnich completes our proof. (Inequality (27) yields the best bound for ¢ = 0.117).

From Theorems 7 and 8 we know that there exist constants Bl and 32 such
that the performance of any (n,k)-sorter, with k < logn, satisfies the bounds
AT > Blnfr-, and A’I'2 > Sznr. These bounds coincide for To(r) s (82/81)/; H
therefore since T > logn+r, only the AT bound is meaningful for values of k
satisfying (32/81) Zk/2 - logk < logn, while for values of k satisfying

/2

2
(32/31)2k - logk > logn the AT bound is stromger for T > TO’ and the AT  bound

is stronger for T < To.
3.2 Long Xevs

In this section, we turn our attention to (n,k)-sorting for x > Z2logn.
We begin by deriving two lower bounds on the information exchange ICfl,'tf?) for

an arbitrary assignment ("/1 ,7/'2) of variables to processors P, and P_ . The two

1
bounds will be based on primary flow and secondary flow, respectively.

Let C‘fl,?fz) be an I/0 assigunment for (n,k)-sorting. For some real

v £ [0,%], we define a number of quantities, each a function of the parameter =«

and of (fl ,?fz) .




;
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o
[

j s nusber of input words whose j—-th bit is ilmput by Pl’

j & number of output words whose j-th bit is output by P

17
39 £(5:3<k-logn, yn ey s (1l=y)n}
I, ! {3 : J < k-logn, ey > (1< )n}
J2 & {3 ¢+ 3 < k-logn, cj < yn}
k-logn-1
B = z b,, B_= ¢ b, s =0,1,2.
g0 3% jeg

Note that B is the number of bits input by Pl in positions with index < k-logn.
In terms of the above quantities, we can state the following results.

Lemma 3 (Primary flow). With the above definitions, for any I/0 assignment

(71,?2) of (n,k)-sorting, (k > 2logn), and for any v€ [0,%], the information

exchange satisfies the bound

LVY,) 2 v(B-By) > v(B- [J ln) . (28)

Proof. By a suitable selection of the logn most significant input positionms,

we can force the output sequence Yo,....Yn_l to be any arbitrary cyclic shift

of the input sequence X "xn-l' If we let mj be the information aexchange

0"

pertaining to the position j over all the n different shifts, then

= b (n-c,) + (n-b

?y = byla=e, P8

In fact, each of the b, bits input by P

b
symmetrically, each of the (n-bj) bits input by P

1 is output by P (n-cj) times, and,
&

2 is output by Pl cj times.

3y the pigeon-hole principle there is a shift size with information

exchange not smaller than the average, which ensures that

k=-logn-1

PR TR (29)
j=0

L,7%) >

o
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For § € Jo U Jz, we have n-cj > yn and qﬁ'i bj(n-cj) :_bjyn. Thus, (29) yields
1
. > . £ b.yn = y(B +B )= y(B-B,)
172 n jEJoUJz j 0 "2 1

The proof is completed by observing that Bl' EZ b.‘l < lJlln. trivially. O
SR

Lemma 4 (Secondary flow). For any 1/0 assignment 0713’2) of (n,k)-sorting,
(k > 2logn), and for any vy €(0,%], the information exchange satisfies the bound

IV, ¥, 2 (1-v)n min(l.rll,l.rzl ,logn) - mlogn-n . (30)

Proof. Assume, without loss of generality, that P, reads at most half of the

1

bits in the logn most significant positions of X. We now construct a set J of
logn positions, so that the content of {x? : k-logn < 1 < k} can be recovered
from (Y% : j € 3} . Specifically, if |J1| > logn, J is just any selection of

logn positions of Jl; else, we augment J, with (logn—[Jl{) positions not in J

1 1

and of index less than k-logn.
We then ccmsider the following class of input instances.

(1) The leading logn bits of X, represent integer 7(i), where T is a

i

permutation of 0,...,n-1.

(2) The logn bits of X, which belong to positions in J represent i.

i

(3) All remaining bits are zero.

Then, the output array Y has the foliowing structure.

(1) The leading logn bits of Y, represent integer i.

i
(2) The logn bits of Yi which belong to positions in J represent
integer w-l(i).

(3) All remaining bits are zero.

Thus, T can be recovered from the output positioms (e . j €J} . Since Pl

50

o
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outputs at least min(|Jl|,logn)e(l-y)n bits of these positions, and it reads

e

at most nlogn bits among the (nlogn-n+O(logn)) bits that specify 7, we have

that

P4l

(7, »7,) 3_(l-y)n-min(]Jl|,logn) - knlogn - n .

Mar &

Considering the alternative case (i.e., P, reads at most half of the bits in

2
t the logn most significant positions) we obtain (30). O
3.2.1 AT2 bound

Lemmas 3 and 4 can now be combined to prove:

Theorem 9. Any VLSI {(n,k)-sorter, with k > 2logn, satisfies the bound

ATZ = Q(k nzlogn). (31)

Procof. With the notation of Theorem 4, we choose Y = {Xi :0<1i<n,

8 < j < k-logn} and select P, so that m = nlogn. (Note that B, the number of

1
bits of U input by Pl’ is equal to m since Y is a set of input variables.) With
this choice, |U| = (k~logn)n; assuming, for simplicity, k > 3 logn, the result

toliows from Theorem 4, if we can show I(nlogn) = Q(nlogn).

Indeed, from Lemma 3 and B = nlogn, for any v< [0,%] we have:

I(nlogn) > v(nlogn - n{JlE). (32)

If we reverse the roles of Pl and Pz in Lemma 3, and note that P, reads

(x~2 logn)n > nlogn bits of %, we also obtain

I(nlogn) > Y(nlogn-nlJzi).

If min( J JZ:) > logn, then inequality (30) yields

P
lb'i
I(nlogn) > (l-y)nlogn - ! nlogn - n = Q(nlogn)

by selecting v = 0. Otherwise, (30) becomes

e e g e ew mielyel
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I(nlogn) > (l-y)n'min(lJlI,lJZI) - 3 nlogn - n . (33

Assuming, without loss of generality, that IJll < IJ » Wwe multiply both sides

N
of (32) by (1-y) and both sides of (33) by ¥, and add corresponding sides; we

P A, ORMERMRAARINY I CaF Py ;

obtain

v w
(Bt}
P

I(nlogn) > y(}-v)nlogn - yn = f(nlogn),

‘r .

by selecting v = . O
3.2.2 AT bound
We now turn our attention to saturation flow. Let integer t(j) € [0,T]
be the instant at which the last bit of Xj is input; we then define the
following sets:
J(0) 2 {3 ¢4 €I and () =t}

The sets Jl(t) i t = 0,...,T-1 form a partition of Jl (note that, for some ¢,

K

J(t) may be empty). Note that no bit belonging to a position in Jl(t) can be -
output prior to t+l. These sets are instrumental in establishing the following
t; result:
_ Lemma 5 (Saturation flow). Let s be the number of storage bits of Pl. Given o
3 anI/0 protocol inducing an I/0 assignment C?fl,'?fz), and an interval [11,1'2] c [(0,T],,
.
£ lee 2SS J (x) U I (r,+D V... U Jl(rz) be a set of |[Z| < logn bit positionms.
. Then, for any v € (0,%], we have =-
E )
le o 1=y) boo . 4
10/1,7/2.5, ) 2= nlzl -s (34)
Moreover, if [ri‘,tlz'] are pairwise disjoint time intervals for i =1,2,...,L,
1 i
c j .-
and Z, © J P ULl Jl(rz), with IZil < logn, then -
a-y = i
KYsTylse=) 2250 1 [z {-sL . (35) *
i=1
ey
o':'
&m
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Proof. Let 2z be the number of bits belonging to positions in Z that are output

by P1 in [11,12]. We first consider the primary flow, under saturated conditions .

All ‘Zln bits belonging to positions in Z have been input by time t,, but none

2

is output prior to T,. Sinmce (1-v)|2|n of them are output by P, (note that

A<y Jl), then (1-y)|Z|n~z are output by Pl after T, Since Pl stores at most

s of them, (l-y)|Z|n-z-s are stored in PZ at t., and must be transferred from P

5 2 2
. to P1 after T, It follows that
t 1(71.7b‘8,') 2 (1-v)|z|n-2z-s . (36) Zf
::::<
L This primary flow bound is strong for small z; for large z, we have a s
~ A
correspondingly large secondary flow. Indeed, since IZ{.i logn, we augment 2Z .jq
to 2* by adjoining (logn-|Z!) arbitrary positions of index < k~logn. Arguing - }ﬁ
-.A
ii as in Lemma 4, we can show that nlogn bits relative to {Xl : 1 = k-logn,...,k=-1} NG
can be extracted from {Yj : j € 2%}, But P, outputs z of these bits during ?4

e
A IS
PR S NI

9 [fl,rzli and, since at most s are in Pl at Tl’ z-s must be transferred from P2

to P1 in [tl.rzl. It follows that

s

I("fl,‘lles,-) 2z z-s, (37

r v
lAll'\

L SR
! 1

I

Adding corresponding sides of (36) and (37) and dividing by 2 we obtain (34).

To prove the general result (35) we now claim that, if Zi and Zj

correspond %o nonoverlapping intervals, then their contributions to
ICVI,Vle,-) are independent and can be added. o
Indeed, for the primary flows generated by Zi and Zj’ the claim follows

from the fact that, although possibly overlapping in time, these two flows QH

carrv independent iInformation on the input values (zi & Zj =) e




Proof. With the notation of theorem 5 we again choose Y = {Xi :0<4i<n,

29

For the secondary flows generated by Zi and Zj the claim follows from the

fact that they occur in different periods of time ([r;,r;]iﬁ [ti,rg] =@).

k-1 k~logn
needs information on the leading input positions X »eeesk ’ -

Intuitively, P1

at several different times and, since it cannot afford to store that information

permanently, every time it must receive it from Pz.lﬂ

This result is now used to establish the following theorem:

Theorem 10. Any VLSI (n,k)-sorter, with k > 2 logn, satisfies the bound

AT = Q(knvnlogn). (38)

0 < j < k-logn and select Pl with area (storage) s = onlogn for a suitable

constant . With this choice H&l = (k-logn)n; if we can show that

I(m|onlogn,=) = Q(m), then bound (38) follows from (16), since = 45 = 4vcnlogni

‘o
[In the following arguments we introduce parameters vy, o, €, and & o

whose values could be chosen for a fine tuning of the lower bound. A feasible

~hoice that gives the right feeling for the range of these parameters is

y = 1/12, ¢ = 5/24, € = 1/6, § = 29/36 .] =
For given real ¢ € [0,1], we partition the sequence of times v
0,1,...,7-1,T into two subsequences ti < té < ...o< oy if [Jl(tﬁ)! 2 clogn B
and :; < tg < i.. < t"v if [Jl(:;)l<'elogn. Obviously =
. N v ! . ’ .

h:liJl(ch): +hil:Jl(Lh); = J - (39) =

We now comnsider separately the contributions to the information exchange of =

positions belonging to Jl(té) (t'~sequence) and Jl(tg) (t"-sequence) .
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t'-Sequence. At time tﬂ, all the IJi(tg)|n bits pertaining to positions 1in
! - - _ '
Jl(th) are in the chip, and - by definition of Jl at least (1 Y)IJl(th)ln

of them have to be output by P

1" Due to the bound on the storage of Pl. at
least (l-y)IJl(:ﬂ)ln-onlogn of these bits are in Pz at time tﬁ and will be
, eventually transferred to P Thus, the overall contribution I' to the

1.

information exchange associated with the t'-sequence is bounded below as

u
t I'> (Q=y)n I |Jl(tﬁ)| - uonlogn. (40)
: h=1
u
. Since J,(g))| 2 elogn, uclogn < I |3,(t)) | and (40) can be rewritten as
t bl
u
I' > (l-y=o/e)n ¢ |J,(eN)]. (41)
- 1*"™h
h=l
h t'-Sequence. We decompose [0,T] into the sequence of intervals ([c;; + l,r_[’_l‘ +1]:
i i

i=0Q,...,L, tﬁ = -1 and tﬁL+l = T) as follows: For some real { (¢ < £ < 1) and
0

for £t = 0Q,...,L-1

hi+l

(§-<)logn < ¢ |J. ()| < glognm.
hop 41 LD
i
Such a decomposition always exists, sincealJl(tg)I < glogn. Moreover,

v
L < £ |3(g)]/((5=€)logn), (42)
h=1l

since at least (£-c)logn positions complete their input in any given interval.
. i 1
J = 1" " P " "
e can now apply Lemma 5 with [11,12] [th +l,th ] Zi Jl(th,+l)u“’ UJl(th )
i i+l i i+l
and s = snlogn to conclude that the overall contribution I" to the information

exchange associated with the t''-sequence is bounded below as

.....
T et e et et st e .. . o " LT S W e U A D PR
. . '-
0
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v
t - " -
I 2(.1_1) n I IJl(t.h)l Lologn
2 h=l
which, by using (42) can be restated as
1oy g v
" ==Y _ = " . 43
I 3( 2 5-e>“hi1|"1("h)| (43)

By choosing £ = ¢ +(1/e-(1-y)/ Za").1 the coefficients of the two bounds

(41) and (43) become identical and, by (39), we obtain
I(m|onlogn,») > I' + I" > (l-Y-c/e)n]Jll . (44)
We now observe that Lemma 3 (with B = m) can be invoked, yielding:
I(m|ologn,=) > I(m) 3_Y(m-IJl|n)- (45)
If we choose o/ = 1-2y, then (44) and (45) yield
I(m|onlogn,=) > Y/2 m

and the theor2m is proved. C

3.2.3. AT/logA bound

We shall now consider the constraints posed by computational friction on
sorting long keys and obtain a new lower bound which turns out to be stronger
than both the A:Z and the AT bounds for k large enough and for a suitable

range of computation times.

Theorem 1l. Aay VLSI (n,k)-sorter, with k > 2 logn, satisfies the bound

AT > 84nk log(nk/T) : (46)

for some constant 30 > 0. Equivalently,

I
ey




i A W D e b U S A A A S i B M A St A i e A

NP Sl P iadie ldi St B S cotheeinAor- i IR Ibile Aihactiiit-Suien 2 he - Reral M-l Rutibsie Jiius Rie e h

32

AT/logA = (nk) . 47)

Proof. We want to apply Theorem 6 to the set of input variables

f 'L(A{X'l :0<1i<mn, 0<]3 < k-logn}. To the set 'L(c of elements of Y input

exactly at time t, we associate the set ¥ of the Ll‘utI/ZJ least significant

F variables in {Y'i : Xi € 'L(t}. Ties (variables pertaining to the same bit

position) are broken arbitrarily. All the variables in %t are functionally
dependent upon the r]'L(tI/Z'I most significant variables of 'L(t so that -

in the terminology of Theorem 6 - a(s) = Fs/31 . 1f we set the bits xl;—l.”xl;-logn
to be the binary representation of i, Yi - Ki for all i's and j's, and Ql't

i trivially carries lutl/Z bits of information about 'L(t so that B8(s) = |s/2].

Thus, all the assumptions of Theorem 6 and Corollary 2 are satisfied, and

LARA

bounds (46) and (47) follow from (20) and (21) with [U| =8(nk). O

~ 3.2.4 Remarks -
*
! From Theorem 9 and Theorem 10 we know that there exis: constants 31 and 82 ]
A such that the performance of any (n,k)-sorter, with k > 2°logn satisfies the :'.:1
o
P bounds AT > Slannlogn, and ATZ > szn(nlogn) . These bounds coincide at time o
- . "y
I, = (3.,/31Elogn. The AT bound is stronger for T > T,, and the 1% bownd is o
E; stronger for T < Tg. ]
=
If we compare the friction bound (46) with the saturation bound (38), -—q
T written as AT > 31kn’4nlogn . we see th_t the Zormer is stronger when
/T ‘ . (3, /so)vnlogn
5 o Y 1 .
«/T > g(n)/a, with g(n) 2 If we now consider the crude fan-in ¢
AR
argument that prescribes T > tlog(kn) (for a suitable constant ), we see o
that «/T > g(n)/n is satisfied bv feasible computation times only if k/T > ko/’.‘0 }
where ko = 3(g(a)Ylogn/n) is the solution of k/(-log(kn)) = g(n)/n, and '
=
T " :(VnZogn) (see Figure 2). s
RS
5N
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3.5 Summary =

We conclude this section with a summary of known lower bounds on sorting
given in Table I. Bounds on T follow from trivial fan-in arguments. Bounds "
on A are due to Leighton [ 11] for long keys, and to Siegel [ 12] for short and -
intermediate-lepgth keys. Bisection bounds on aT? for long keys are due to
Thompson [1] {for word-level protocols) and Leighton [1l] (for arbitrary
protocols). For short and medium-length keys bisection bounds are due to
Sierel [12,13] . An alternative proof of AIZ = Q(nzhz), based on primary and
secondary flow, is given in [14]. The remaining bounds are those given in this e
paper. The A’I‘2 = Q(nr) result has been independently obtained in [12].

The above bounds show that the area-=time complexity of sorting is determined

by different computational mechanisms, each of which dominates for a particular

¢

range of keylengths and computation times. An effective overview of the
different bounds is provided by Figure 2.

All the lower bounds of Table I are known to be tight or nearly tight.
Several optimal circuits for (n,logn+d(logn))-sorting, (the first case of
sorting analyzed in the VLSI model, which partially overlaps with sorting Qf o

intermediate-length and long keys), have been proposed by the authors (15,16,17]

and by Leighton [11]. Optimal circuits for keys of any intermediate length are gi{i .

in [ 14] . Constructions that attain the ATZ, AT and AT/logA bounds for lung kevs,

as well as constructions that are near optimal for short keys are described
in (18] . Further optimal designs for several key lengths are reported by
Cole and Siegel [19] (personal communication). Several designs of VLSI sorters,

potentially of practical interest even when asymptotically suboptimal, are v

surveyed by Thompson [20] . A systematic discussion of VLSI sorting can be s

found in [ 14].
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Theorem 13. Any VLSI (n,k)-merger satisfies t : following bounds. For -

4, Other Applications

The lower-bound techniques of Section 2 afford the analysis of several other
problems beside those discussed in Section 3., A few results are stated and
commented on below. The proofs are similar in flavor to those given in
Section 3, and are omitted here for the sake of brevity.

CYCLIC SHIFT. The input of the (n,k)-cyclic-shift problem is a pair (X,s),
where X is an n x k binary array, s €{0,1,...,n-1}, and the output is a biaary

array Y such that Yj = X(j-s)mod n

Theorem 12. Any VLSI (n,k)-cyclic-shifter satisfies the bounds

AT = Q(kn2) , (48a)

/2

AT = n(kn3 ) . (48b)

Comments. A detailed proof of Theorem 15 is given in [ 14] . Result (48a) has

also been reported in [4]. =
MERGING. The (n,k)-merging problem is the specialization of (n,k)-sorting when

the input subsequences (XO"'°’Xn/2-l) and (Xn/Z”"’Kn-l) are sorted. -

x < logn, and r 3 2k:

at? = atar) , (49a)
AT = a(art’/?) . (49b)
For k > logn:
aT? = 2((k-logm)n?), (49¢)
3,2 -

AT = Q((k-logn)n™' %), (49d)

AT/logA = ((k-logn)n) . (49e)




[_"'~I"."_ L AL L il ar e —— L reiraien aom !. S

B

t 36
F Comments. Bounds (49a), (49b) and (49e) are identical in the order to those
obtained for (n,k)-sorting. Bounds (49c) and (49d) are a factor of loga
F smaller., The reason is that while primary flow is of the same order in both
problems, the secondary flow is a factor of logn smaller for merging. Indeed,
r 8(n) bits are necessary and sufficient to specify a merging permutation.
' RECORD SORTING. A formulation of sorting, more general than the one considered
r in Section 2, assumes that the n items to be sorted are records of two fields,
the key (of k bits) and the information (of p bits). The output is the
multiset of input records rearranged in order of nondecreasing keys.
L Sorting is called stable when records with the same key preserve in the output
sequence the same relative order cthey had in the input sequence.
. Theorem 14. A VLSI stable sorter of records, with k < p and k < logn, satisfies
i the bounds
g at? = a(pa’®) , (50a) i
b AT = Q(pn(nk)l/z) . (50b) }E?
F‘ Comments. Proofs are similar to those of Theorems 9 and 10. However, observe t]
that there is no analogous to Theorem 14, since the bit positions of the
; information field do not interact with each other, i
The lower bound techniques of this paper are certainly applicable to :]
T- other problems, and we hope they will contribute to a zoberent formulation of a;
"L31 ccmputation theory. if
o
]
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